Two different fractional Stefan problems that are convergent to the same classical Stefan problem
نویسندگان
چکیده
منابع مشابه
Nonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملClassical two - phase Stefan problem for spheres
The classical Stefan problem for freezing (or melting) a sphere is usually treated by assuming that the sphere is initially at the fusion temperature, so that heat flows in one phase only. Even in this idealized case there is no (known) exact solution, and the only way to obtain meaningful results is through numerical or approximate means. In this study, the full two-phase problem is considered...
متن کاملnonlinear two-phase stefan problem
in this paper we consider a nonlinear two-phase stefan problem in one-dimensional space. the problem is mapped into a nonlinear volterra integral equation for the free boundary.
متن کاملA Two–Sided Contracting Stefan Problem
We study a novel two–sided Stefan problem – motivated by the study of certain 2D interfaces – in which boundaries at both sides of the sample encroach into the bulk with rate equal to the boundary value of the gradient. Here the density is in [0, 1] and takes the two extreme values at the two free boundaries. It is noted that the problem is borderline ill–posed: densities in excess of unity lia...
متن کاملA Novel Algorithm for Solving the Classical Stefan Problem
A novel algorithm for solving the classic Stefan problem is proposed in the paper. Instead of front tracking, we preset the moving interface locations and use these location coordinates as the grid points to find out the arrival time of moving interface respectively. Through this approach, the difficulty in mesh generation can be avoided completely. The simulation shows the numerical result is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods in the Applied Sciences
سال: 2018
ISSN: 0170-4214
DOI: 10.1002/mma.5196